據業界推估,台積電和三星等領先企業已成功應用AI遷移學習,
(半導體潔淨室轉移問題)渡河大作戰最佳排程 高速版,AI 推理約需3-10分鐘,用AI生成Python程式,可加快執行速度到千分之一秒以下 。Use Code Gen to solve River Puzzle 2 ,結果必須視覺化,動畫尤佳
張老師與他的科技英文與科普傳播 Technical English for Engineering Students Using Claude
據業界推估,台積電和三星等領先企業已成功應用AI遷移學習,
(半導體潔淨室轉移問題)渡河大作戰最佳排程 高速版,AI 推理約需3-10分鐘,用AI生成Python程式,可加快執行速度到千分之一秒以下 。Use Code Gen to solve River Puzzle 2 ,結果必須視覺化,動畫尤佳
在2147年,地球已步入生態危機的臨界點。海平面上升淹沒了沿海城市,乾旱和洪水交替肆虐大陸,生物多樣性以前所未有的速度崩潰。人類文明正面臨著不可逆轉的衰退。
在這絕望之際,"希望號"探索飛船被派往新發現的行星GAIA-9,這顆行星的大氣和生物特徵顯示出可能存在智慧生命。任務既簡單又艱巨:尋找新的家園,或者奇蹟般地找到能夠拯救地球的技術。
指揮官史黛拉·陳和科學家馬庫斯·萊特組成的先遣小組降落在GAIA-9表面,隨即發現了一個出乎意料的奇觀——一個外表簡單卻擁有高度先進共生技術的物種。蓋亞生物以其獨特的矽基生理結構和心靈感應能力,已經掌握了星際生態平衡的秘密。
當人類的科學謹慎遇見外星的開放信任,一場關乎生存的外交舞蹈就此展開。史黛拉發現自己具有與蓋亞生物建立心靈連接的罕見能力,而馬庫斯的分析思維則為解讀這個外星文明提供了關鍵洞察。
然而,隨著地球指揮中心變得越來越急切,政治壓力和軍事介入的威脅日益增加。史黛拉和馬庫斯必須在競爭的議程中導航,在信任與懷疑之間取得平衡,同時揭開蓋亞文明的核心秘密——一種能夠恢復行星生態系統的革命性共生技術。
時間正在流逝,一個文明的命運取決於你的選擇。你是會遵循嚴格的科學協議,優先考慮人類的短期利益,還是冒險建立全新的跨物種聯盟?你的決定將塑造不僅是地球的未來,還有整個銀河系的命運。
在《史黛拉的首次接觸:蓋亞之謎》中,每一次互動都是一次探索,每一個選擇都是一次哲學思考,而最終的結局將反映你對共存、信任和生態平衡的理解。
準備踏上這趟穿越星際的旅程,在那裡,拯救一個世界的答案可能就藏在另一個世界之中。
故事設定依據
開始遊戲並於關鍵時刻繪圖
製作科技英文互動圖示卡
製作科技英文互動圖示卡
任選以下科技英文例句製作語言遊樂場
Laser weapons protect aircraft from surface- and air-launched threats. (Video Credit: Lockheed Martin)
依據圖卡資訊製作互動遊戲
圖卡資訊
互動遊戲(這只是參考,鼓勵自行創作)
TSMC
financial analysis Grok DeepSearch
Graphic Dashboard Claude Sonnet 3.7
Dashboard Sonnet 4, Aug 14, 2025
Meta (Grok 4, 42s + Sonnet 4)
Dashboard Sonnet 4, Aug 14, 2025
Meta (Sonnet 4 w/Research 4m 51s)
AI's Strength
以經典的渡河問題為例,即使我們明確要求Claude使用A*演算法,AI並不總是完全按照指令執行。原因有幾點:
思維模式與內部邏輯:Claude有自己的推理方式,可能會根據問題特性選擇它認為更適合的解決方案,例如使用啟發式搜尋(heuristic)結合回溯法(backtracking)來解決限制滿足問題(CSP),而非嚴格遵循A*。
執行環境限制:即使Claude能生成Python實現的A*演算法,但在網頁環境中,它只能執行JavaScript,無法實際運行Python代碼來驗證結果。
概念層次vs程式層次:要求Claude在「思維層次」使用A*與要求它「用程式實現A*」是不同的。在思維層次上,Claude可能會融合多種解題策略而非純粹的A*。
當AI無法以推理模式解出問題時,我們可以「強迫」Claude使用A*思維來解決 - 引導AI按特定思路或洞見進行問題分析,即使不寫程式碼。這種方式能更好地引導AI的解題路徑。
這也突顯了與AI工具互動時的重要性 - 不只是給予指令,有時還需要適當引導其思考過程,才能獲得我們期望的解題方法和結果。當然很多時候,AI並不需要這樣的導引。
每個對話( chat) 都有容許的記憶長度(context window),這跟人類是不一樣的,
因為LLM使用Transformer 機制執行 Attention,所需的運算與長度平方成正比,當對話變長時,計算時間平方增加,反應變慢,運氣不好的話,某個問題還可能被上一個問題干擾,造成誤判甚至出錯。
因此如果問題是系列性的,例如你要去九州玩,本來想去五天,看了AI給的行程,覺得五天好像不夠,想改為六天,那當然繼續在同一個對話下去,說不定大部分行程都一樣,只要微調就可以了,可以省下很多算力,加快反應時間。但是如果你是想改去荷蘭玩,那我建議另起一個對話比較好。
每個對話( chat) 都有容許的記憶長度(context window),這跟人類是不一樣的,
1. 推理是把一件原本複雜的任務,拆解成一連串小型的步驟,
- **Constraint 1**: If the mother is absent and the father is present on any side, the father will hit the daughters.
- **Constraint 2**: If the servant is absent on any side, the dog will bite family members (F, M, S1, S2, D1, D2) present on that side.
A state is valid if, on each side of the river:
- The father is not present with any daughters without the mother.
- The dog is not present with any family members without the servant.
### State Representation
Each state is represented as \( (F, M, V, G, S_A, D_A, B) \):
- \( F, M, V, G \): 0 if on side A (starting side), 1 if on side B (destination side).
- \( S_A \): number of sons on side A.
- \( D_A \): number of daughters on side A.
- \( B \): boat location (0 for side A, 1 for side B).
### Validity Conditions
For a state to be valid:
- **Side A**:
- Not \( (F = 0 \text{ and } M = 1 \text{ and } D_A > 0) \) (father with daughters without mother).
- Not \( (G = 0 \text{ and } V = 1 \text{ and } (F = 0 \text{ or } M = 0 \text{ or } S_A > 0 \text{ or } D_A > 0)) \) (dog with family members without servant).
- **Side B**:
- Not \( (F = 1 \text{ and } M = 0 \text{ and } (2 - D_A) > 0) \) (father with daughters without mother).
- Not \( (G = 1 \text{ and } V = 0 \text{ and } (F = 1 \text{ or } M = 1 \text{ or } (2 - S_A) > 0 \text{ or } (2 - D_A) > 0)) \) (dog with family members without servant).
The goal is to get everyone from side A to side B in a valid sequence of steps. Below is a sequence of 11 crossings, with each state's validity checked.
---
### Valid Sequence with State Validity Checks
#### **Step 1: Initial State**
- **State**: \( (0, 0, 0, 0, 2, 2, 0) \)
- **Description**: Everyone (F, M, V, G, S1, S2, D1, D2) is on side A, boat on A.
- **Side A**: F=0, M=0, V=0, G=0, S_A=2, D_A=2
- Father with daughters without mother: \( F = 0 \text{ and } M = 1 \text{ and } D_A > 0 \)? No (M=0).
- Dog with family without servant: \( G = 0 \text{ and } V = 1 \text{ and family present} \)? No (V=0).
- **Side B**: Empty, no issues.
- **Valid**: Yes.
#### **Step 2: V and G to B**
- **State**: \( (0, 0, 1, 1, 2, 2, 1) \)
- **Description**: Servant and dog cross to B, boat on B.
- **Side A**: F=0, M=0, S_A=2, D_A=2
- \( F = 0 \text{ and } M = 1 \text{ and } D_A > 0 \)? No (M=0).
- \( G = 0 \text{ and } V = 1 \text{ and family present} \)? No (G=1).
- **Side B**: V=1, G=1
- \( F = 1 \text{ and } M = 0 \text{ and } (2 - D_A) > 0 \)? No (F=0, 2-2=0).
- \( G = 1 \text{ and } V = 0 \text{ and family present} \)? No (V=1).
- **Valid**: Yes.
#### **Step 3: V to A**
- **State**: \( (0, 0, 0, 1, 2, 2, 0) \)
- **Description**: Servant returns to A, boat on A.
- **Side A**: F=0, M=0, V=0, S_A=2, D_A=2
- \( F = 0 \text{ and } M = 1 \)? No.
- \( G = 0 \text{ and } V = 1 \)? No (G=1).
- **Side B**: G=1
- \( G = 1 \text{ and } V = 0 \text{ and family present} \)? Yes, but no family members on B (F=0, M=0, 2-S_A=0, 2-D_A=0), so no issue.
- **Valid**: Yes.
#### **Step 4: F and M to B**
- **State**: \( (1, 1, 0, 1, 2, 2, 1) \)
- **Description**: Father and mother cross to B, boat on B.
- **Side A**: V=0, S_A=2, D_A=2
- \( F = 0 \text{ and } M = 1 \)? No.
- \( G = 0 \text{ and } V = 1 \)? No (G=1).
- **Side B**: F=1, M=1, G=1
- \( F = 1 \text{ and } M = 0 \text{ and } (2 - D_A) > 0 \)? No (M=1).
- \( G = 1 \text{ and } V = 0 \text{ and family present} \)? Yes, and F=1, M=1, but V=0, so dog bites family members.
- **Correction**: This state is invalid due to Constraint 2 on side B. Let’s adjust.
---
### Adjusted Sequence
Let’s try moving V and G together initially, then manage family members carefully.
#### **Step 1: Initial State**
- \( (0, 0, 0, 0, 2, 2, 0) \)
- **Valid**: Yes (as above).
#### **Step 2: V and G to B**
- \( (0, 0, 1, 1, 2, 2, 1) \)
- **Valid**: Yes (as above).
#### **Step 3: V to A**
- \( (0, 0, 0, 1, 2, 2, 0) \)
- **Valid**: Yes (as above).
#### **Step 4: M and V to B**
- **State**: \( (0, 1, 1, 1, 2, 2, 1) \)
- **Description**: Mother and servant cross to B, boat on B.
- **Side A**: F=0, S_A=2, D_A=2
- \( F = 0 \text{ and } M = 1 \text{ and } D_A > 0 \)? No (M=1, but on B).
- \( G = 0 \text{ and } V = 1 \)? No (G=1).
- **Side B**: M=1, V=1, G=1
- \( F = 1 \text{ and } M = 0 \)? No (F=0).
- \( G = 1 \text{ and } V = 0 \)? No (V=1).
- **Valid**: Yes.
#### **Step 5: M to A**
- **State**: \( (0, 0, 1, 1, 2, 2, 0) \)
- **Description**: Mother returns to A, boat on A.
- **Side A**: F=0, M=0, S_A=2, D_A=2
- \( F = 0 \text{ and } M = 1 \)? No.
- \( G = 0 \text{ and } V = 1 \)? No (G=1).
- **Side B**: V=1, G=1
- \( G = 1 \text{ and } V = 0 \)? No (V=1).
- **Valid**: Yes.
#### **Step 6: F and V to B**
- **State**: \( (1, 0, 1, 1, 2, 2, 1) \)
- **Description**: Father and servant cross to B, boat on B.
- **Side A**: M=0, S_A=2, D_A=2
- \( F = 0 \text{ and } M = 1 \)? No (M=0).
- \( G = 0 \text{ and } V = 1 \)? No (G=1).
- **Side B**: F=1, V=1, G=1
- \( F = 1 \text{ and } M = 0 \text{ and } (2 - D_A) > 0 \)? No (2-2=0, no daughters on B).
- \( G = 1 \text{ and } V = 0 \)? No (V=1).
- **Valid**: Yes.
#### **Step 7: V to A**
- **State**: \( (1, 0, 0, 1, 2, 2, 0) \)
- **Description**: Servant returns to A, boat on A.
- **Side A**: M=0, V=0, S_A=2, D_A=2
- \( F = 0 \text{ and } M = 1 \)? No.
- \( G = 0 \text{ and } V = 1 \)? No (G=1).
- **Side B**: F=1, G=1
- \( F = 1 \text{ and } M = 0 \text{ and } (2 - D_A) > 0 \)? No (no daughters on B).
- \( G = 1 \text{ and } V = 0 \text{ and family present} \)? Yes, and F=1, so invalid (dog bites father).
- **Correction**: Invalid state.
---